Merging Alignments for Decomposed Replay

Eric Verbeek
Wil van der Aalst
• Preliminaries
 – Monolithical replay
 – Decomposed replay
• Merging alignments
 – Pseudo alignment
 – Alignment of alignments
 – Stitching rules
• Wrapping up
 – Conclusions
 – Future work
• Preliminaries
 – Monolithical replay
 – Decomposed replay
• Merging alignments
 – Pseudo alignment
 – Alignment of alignments
 – Stitching rules
• Wrapping up
 – Conclusions
 – Future work
Initial marking

Activity-labeled transitions

Silent transitions

Final marking(s)

Accepting Petri net
\[\langle a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8 \rangle \]
Synchronous move on a_1 and t_1
\[\langle a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8 \rangle \]
Synchronous move on a2 and t3

\[\langle a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8 \rangle \]
\[\langle a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8 \rangle \]
\[\langle a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8 \rangle \]
Computation times for replay

Not decomposed

DMKD 2006
12-42 act.

IS 2014
32-59 act.

BPM 2013
275-429 act.

Takes too long
• Preliminaries
 – Monolithical replay
 – Decomposed replay
• Merging alignments
 – Pseudo alignment
 – Alignment of alignments
 – Stitching rules
• Wrapping up
 – Conclusions
 – Future work
Decomposition of net into subnets

- Places join arcs
- Silent transitions join arcs
- Transitions with same label join arcs
\[\langle a_1, a_2, a_3, a_4, a_6 \rangle \]

<table>
<thead>
<tr>
<th></th>
<th>(a_1)</th>
<th>(\tau)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>(t_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>(t_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>(t_5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Adapted costs
Visible model move
• Non-decomposed costs 0 if and only if decomposed costs 0
• Decomposed costs less or equal to non-decomposed costs
Computation times for replay

- Computation time (in seconds)
- Not decomposed
- Decomposed

All in 12 seconds
• Preliminaries
 – Monolithical replay
 – Decomposed replay

• Merging alignments
 – Pseudo-alignment
 – Alignment of alignments
 – Stitching rules

• Wrapping up
 – Conclusions
 – Future work
Motivation for pseudo-alignments
Transitions with same label join arcs
• Preliminaries
 – Monolithical replay
 – Decomposed replay

• Merging alignments
 – Pseudo alignment
 – Alignment of alignments
 – Stitching rules

• Wrapping up
 – Conclusions
 – Future work
Alignment of a_1

Synchronous moves: Match

Alignment
Invisible model move: Match

Alignment of t2

<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>t_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_1</td>
<td>t_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_1</td>
<td>τ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_1</td>
<td>t_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alignment

- **Move:** Match
- **Alignment:**
Synchronous move vs log move: No match

Pseudo-alignment
Synchronous move vs log move: No match

Pseudo-alignment
Alignment of subalignments

<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{10}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pseudo-alignment
• Preliminaries
 – Monolithical replay
 – Decomposed replay
• Merging alignments
 – Pseudo alignment
 – Alignment of alignments
 – Stitching rules
• Wrapping up
 – Conclusions
 – Future work
1. All done

2. Activity without conflict
 – All agree on next synchronous or log move

3. Transition without conflict
 – All agree on next visible model move or invisible model move

4. Activity with conflict
 – Guided by trace, so no confusion what the next activity is
 – Take a most expensive move

5. Transition with conflict
 – No guidance possible, multiple transitions are possible
 – Take a most expensive move
• Alignment if costs 0
 – That is, if perfect match

• Costs 0: No conflicts
 – Synchronous moves
 • ‘Interface’ activity
 – Unique transition
 • ‘Shared’ activity
 – Unique subnet
 – Invisible model moves
 • Unique subnet
Implemented in ProM 6, integrated into decomposed replayer
• Preliminaries
 – Monolithical replay
 – Decomposed replay

• Merging alignments
 – Pseudo alignment
 – Alignment of alignments
 – Stitching rules

• Wrapping up
 – Conclusions
 – Future work
• Alignment
 – If costs 0
 – If possible

• Pseudo-alignment
 – Otherwise

• Decomposed replay
 – Includes alignment merge
 – Faster than non-decomposed replay
"Replay using Decomposition" Plug-in in ProM 6.6
• Preliminaries
 – Monolithical replay
 – Decomposed replay
• Merging alignments
 – Pseudo alignment
 – Alignment of alignments
 – Stitching rules
• Wrapping up
 – Conclusions
 – Future work
• Reduction of pseudo-alignments
 – Replayer
 • Now returns a best alignment
 • Might return the set of best alignments
 • Reconsider alignment merge
 – Which best alignments to use?
 – No guarantee
 • See example shown earlier
 • Optimization
 – Choice if visible transition moves conflict
 – Now we take one with maximal support:
 • We prefer 2 out of 3 over 1 out of 2
Questions?