Decomposed Replay Using Hiding and Reduction

Eric Verbeek
• Preliminaries
 – Monolithical replay
 – Decomposed replay
• Hiding and Reduction
 – Problem with decomposed replay
 – Approach
 – Reduction rules
 – Results
• Wrapping up
 – Conclusions
 – Future work
• Preliminaries
 – Monolithical replay
 – Decomposed replay
• Hiding and Reduction
 – Problem with decomposed replay
 – Approach
 – Reduction rules
 – Results
• Wrapping up
 – Conclusions
 – Future work
\[\langle a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8 \rangle \]
Synchronous move on a_1 and t_1
\[\langle a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8 \rangle \]
Synchronous move on a_2 and t_3
\[\langle a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8 \rangle \]

No match
\langle a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8 \rangle

\begin{array}{cccccccc}
<table>
<thead>
<tr>
<th>a_1</th>
<th>\tau</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>\tau</th>
<th>a_5</th>
<th>a_6</th>
<th>\tau</th>
<th>a_7</th>
<th>a_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>t_2</td>
<td>t_3</td>
<td>t_4</td>
<td>t_5</td>
<td>t_6</td>
<td>t_7</td>
<td>t_8</td>
<td>t_9</td>
<td>t_{10}</td>
<td>\rangle</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>
\end{array}
Computation times for replay

- DMKD 2006: 12-42 act.

Takes too long

Not decomposed
• Preliminaries
 – Monolithical replay
 – Decomposed replay
• Merging alignments
 – Pseudo alignment
 – Alignment of alignments
 – Stitching rules
• Wrapping up
 – Conclusions
 – Future work
Decomposition of net into subnets

- Places join arcs
- Silent transitions join arcs
- Transitions with same label join arcs
\[\langle a_1, a_2, a_3, a_4, a_6 \rangle \]
Subalignments

Visible model move
• Non-decomposed costs 0 if and only if decomposed costs 0
• Decomposed costs less or equal to non-decomposed costs
Decomposed replay is faster

Computation times, with provided nets

DMKD 2006
12-42 act.

IS 2014
32-59 act.

BPM 2013
275-429 act.

Monolithic replay takes too long

Decomposed replay is faster
Decomposed replay is slower
Infeasible

Computation times for replay – provided nets
• Preliminaries
 – Monolithical replay
 – Decomposed replay

• Hiding and Reduction
 – Problem with decomposed replay
 – Approach
 – Reduction rules
 – Results

• Wrapping up
 – Conclusions
 – Future work
Decomposed replay is faster

Decomposed replay is slower

Infeasible

BPIC 2012
36 act.

BPIC 2015
356-410 act.

Computation times for replay – discovered nets
‘Flower’ construct
5 source transitions

3 sink transitions

Log a22f0n05 – Problematic subnet
Sink transition - comparison
• Preliminaries
 – Monolithical replay
 – Decomposed replay

• Hiding and Reduction
 – Problem with decomposed replay
 – Approach
 – Reduction rules
 – Results

• Wrapping up
 – Conclusions
 – Future work
• Hide visible transition ‘not covered’ by subnet
• Apply behavior-preserving reduction rules afterwards
Subnet by hiding and reduction
Hiding and reduction - comparison

No source transitions
• Preliminaries
 – Monolithical replay
 – Decomposed replay

• Hiding and Reduction
 – Problem with decomposed replay
 – Approach
 – Reduction rules
 – Results

• Wrapping up
 – Conclusions
 – Future work
Behavior-preserving reduction rules (1)

Legend

- an invisible transition
- a visible transition
- any transition
- a place containing x tokens in the initial and every final marking (where $x > 0$)
- an unmarked place
- any place
- any number of these objects (includes connected arcs)
- updating initial and final markings if needed
Behavior-preserving reduction rules (2)

Legend

- an invisible transition
- a visible transition
- any transition
- a place containing x tokens in the initial and every final marking (where $x > 0$)
- an unmarked place
- any place
- any number of these objects (includes connected arcs)
- updating initial and final markings if needed

Need sibling

Needs x tokens
• Preliminaries
 – Monolithical replay
 – Decomposed replay
• Hiding and Reduction
 – Problem with decomposed replay
 – Approach
 – Reduction rules
 – Results
• Wrapping up
 – Conclusions
 – Future work
Computation times, with discovered nets

Hide-and-reduce replay is faster
Hide-and-reduce replay is slower
Infeasible

Monolithic replay

+ Hide-and-reduce replay is faster
× Hide-and-reduce replay is slower
○ Infeasible
Computation times, with provided nets

Hide-and-reduce replay is faster
Hide-and-reduce replay is slower
Infeasible

prAm6
prBm6
• Preliminaries
 – Monolithical replay
 – Decomposed replay
• Hiding and Reduction
 – Problem with decomposed replay
 – Approach
 – Reduction rules
 – Results
• Wrapping up
 – Conclusions
 – Future work
Decomposed replay sometimes much worse
 - On discovered nets
 - From less than 10 seconds to more than 1000 seconds

Hide&Reduce replay never much worse
 - On discovered or provided nets
 - Typically faster if it takes more than 10 seconds
 - From more than 1000 seconds to just above 10 seconds

On provided nets
 - Decomposed replay
 - as it is fastest

On discovered nets
 - Hide&Reduce replay
 - as it provides the most answers in 1000 seconds
The Process Mining Toolkit

ProM
Revision 28643
6.6

Wil van der Aalst / Peter van den Brand / Massimiliano de Leoni / Boudewijn van Dongen / Dirk Fahlnd / Christian Günther / Bart Hompes / Maikel Leemans / Sander Leemans / Xixi Lu / Felix Mannhardt / Eric Verbeek / Michael Westergaard
"Replay using Decomposition" Plug-in in ProM 6.6

The inputs

The plug-in

The outputs
Configuring the plug-in

The configuration to select
• Preliminaries
 – Monolithical replay
 – Decomposed replay

• Hiding and Reduction
 – Problem with decomposed replay
 – Approach
 – Reduction rules
 – Results

• Wrapping up
 – Conclusions
 – Future work
• **Cost-preserving reduction rules**
 – Any reduction rule is fine, as long as it preserves the costs for any possible trace
 – Behavior-preserving implies cost-preserving, but might not equal
 – More rules?
 • Leading to better reduction?
Questions?