Process Mining
Discovering Workflow Models from Event-Based Data

A.J.M.M. Weijters W.M.P van der Aalst

Eindhoven University of Technology, P.O. Box 513, NL-5600 MB,
Eindhoven, The Netherlands, +31 40 2473857/2290

Abstract
Contemporary workflow management systems are driven by explicit process models, i.e., a completely specified workflow design is required in order to enact a given workflow process. Creating a workflow design is a complicated time-consuming process and typically there are discrepancies between the actual workflow processes and the processes as perceived by the management. Therefore, we propose a technique for process mining. This technique uses workflow logs to discover the workflow process as it is actually being executed. The process mining technique proposed in this paper can deal with noise and can also be used to validate workflow processes by uncovering and measuring the discrepancies between prescriptive models and actual process executions.

1. Introduction
During the last decade workflow management concepts and technology [2, 9, 10] have been applied in many enterprise information systems. Workflow management systems such as Staffware, IBM MQSeries, COSA, etc. offer generic modeling and enactment capabilities for structured business processes. By making graphical process definitions, i.e., models describing the life-cycle of a typical case (workflow instance) in isolation, one can configure these systems to support business processes. Besides pure workflow management systems many other software systems have adopted workflow technology.

Despite its promise, many problems are encountered when applying workflow technology. As indicated by many authors, workflow management systems are inflexible and have problems dealing with change [2]. In this paper we take a different perspective with respect to the problems related to flexibility. We argue that many problems are resulting from a discrepancy between workflow design (i.e., the construction of predefined workflow models) and workflow enactment (the actual execution of workflows). Workflow designs are typically made by a small group of consultants, managers and specialists. As a result, the initial design of a workflow is often incomplete, subjective, and at a too high level. Therefore, we propose to "reverse the process". Instead of starting with a workflow design, we start by gathering information about the workflow processes as they take place. We assume that it is possible to record events such that (i) each event refers to a task (i.e., a well-defined step in the workflow), (ii) each event refers to a case (i.e., a workflow instance), and (iii)
events are totally ordered. Any information system using transactional systems such as ERP, CRM, or workflow management systems will offer this information in some form. We use the term process mining for the method of distilling a structured process description from a set of real executions.

The remainder of this paper is as follows. First we discuss related work and introduce some preliminaries including a modeling language for workflow processes and the definition of a workflow log. Then we present a new technique for process mining. Finally, we conclude the paper by summarizing the main results and pointing out future work.

2. Related Work and Preliminaries

The idea of process mining is not new [3, 4, 5, 8]. However, most results are limited to sequential behavior. Cook and Wolf extend their work to concurrent processes in [5]. They also propose specific metrics (entropy, event type counts, periodicity, and causality) and use these metrics to discover models out of event streams. This approach is similar to the one presented in this paper. However, our metrics are quite different and our final goal is to find explicit representations for a broad range of process models, i.e., we generate a concrete Petri net rather than a set of dependency relations between events.

Compared to existing work we focus on workflow processes with concurrent behavior, i.e., detecting concurrency is one of our prime concerns. Therefore, we want to distinguish AND/OR splits/joins explicitly. To reach this goal we combine techniques from machine learning with WorkFlow nets (WF-nets, [1]). WF-nets are a subset of Petri nets. Note that Petri nets provide a graphical but formal language designed for modeling concurrency. Moreover, the correspondence between commercial workflow management systems and WF-nets is well understood [1, 2, 7, 9, 10].

Workflows are by definition case-based, i.e., every piece of work is executed for a specific case. Examples of cases are a mortgage, an insurance claim, a tax declaration, an order, or a request for information. The goal of workflow management is to handle cases as efficient and effective as possible. A workflow process is designed to handle similar cases. Cases are handled by executing tasks in a specific order. The workflow process model specifies which tasks need to be executed and in what order. Petri nets [6] constitute a good starting point for a solid theoretical foundation of workflow
management. Clearly, a Petri net can be used to specify the routing of cases (workflow instances). Tasks are modeled by transitions and causal dependencies are modeled by places and arcs. As a working example we use the Petri net shown in Figure 1.

The transitions T_1, T_2, ..., T_{13} represent tasks, The places S_b, P_1, ..., P_{10}, S_e represent the causal dependencies. In fact, a place corresponds to a condition that can be used as pre- and/or post-condition for tasks. An AND-split corresponds to a transition with two or more output places (from T_2 to P_2 and P_3), and an AND-join corresponds to a transition with two or more input places (from P_8 and P_9 to T_{11}). OR-splits/OR-joins correspond to places with multiple outgoing/ingoing arcs (from P_5 to T_6 and T_7, and from T_7 and T_{10} to P_8). At any time a place contains zero or more tokens, drawn as black dots. Transitions are the active components in a Petri net: they change the state of the net according to the following firing rule:

1. A transition t is said to be enabled iff each input place of t contains at least one token.
2. An enabled transition may fire. If transition t fires, then t consumes one token from each input place p of t and produces one token for each output place p of t.

A Petri net which models the control-flow dimension of a workflow, is called a WorkFlow net (WF-net) [1]. A WF-net has one source place (S_b) and one sink place (S_e) because any case (workflow instance) handled by the procedure represented by the WF-net is created when it enters the workflow management system and is deleted once it is completely handled, i.e., the WF-net specifies the life-cycle of a case. An additional requirement is that there should be no “dangling tasks and/or conditions”, i.e., tasks and conditions which do not contribute to the processing of cases. Therefore, all the nodes of the workflow should be on some path from source to sink.

Although WF-nets are very simple, their expressive power is impressive. In this paper we restrict our self to so-called sound WF-nets [1]. A workflow net is sound if the following requirements are satisfied: (i) termination is guaranteed, (ii) upon termination, no dangling references (tokens) are left behind, and (iii) there are no dead tasks, i.e., it should be possible to execute an arbitrary task by following the appropriate route. Soundness is the minimal property any workflow net should satisfy.

In this paper, we use workflow logs to discover workflow models expressed in terms of WF-nets. A workflow log is a sequence of events. For reasons of simplicity we assume that there is just one workflow process. Note that this is not a limitation since the case identifiers can be used to split the workflow log into separate workflow logs for each process. Therefore, we can consider a workflow log as a set of event sequences where each event sequence is simply a sequence of task identifiers. Formally, $WL \subseteq T^*$ where WL is a workflow log and T is the set of tasks. An example event sequence of the Petri net of Figure 1 is given below:

$T_1, T_2, T_4, T_3, T_5, T_9, T_6, T_3, T_5, T_{10}, T_8, T_{11}, T_{12}, T_2, T_4, T_7, T_3, T_5, T_8, T_{11}, T_{13}$

Using the definitions for WF-nets and event logs we can easily describe the problem addressed in this paper: Given a workflow log WL we want to discover a WF-net that (i) potentially generates all event sequence appearing in WL, (ii) generates as few event sequences of $T^* \setminus WL$ as possible, (iii) captures concurrent behavior, and (iv) is as simple and compact as possible. Moreover, to make our technique practical applicable we want to be able to deal with noise.
3. Process mining technique

In this section we present the details of our process mining technique. We can distinguish three mining steps: Step (i) the construction of a dependency/frequency table (D/F-table), Step (ii) the induction of a D/F-graph out of a D/F-table, and Step (iii) the reconstruction of the WF-net out of the D/F-table and the D/F graph.

3.1 Construction of the dependency/frequency table

The starting point of our workflow mining technique is the construction of a D/F-table. For each task A the following information is abstracted out of the workflow log: (i) the overall frequency of task A (notation $\#A$), (ii) the frequency of task A directly preceded by another task B (notation $B<A$), (iii) the frequency of A directly followed by another task B (notation $A>B$), (iv) the frequency of A directly or indirectly preceded by another task B but before the next appearance of A (notation $B<<<A$), (v) the frequency of A directly or indirectly followed by another task B but before the next appearance of A (notation $A>>>B$), and finally (vi) a metric that indicates the strength of the causal relation between task A and another task B (notation $A \rightarrow B$).

<table>
<thead>
<tr>
<th></th>
<th>$B<A$</th>
<th>$A>B$</th>
<th>$B<<<A$</th>
<th>$A>>>B$</th>
<th>$A \rightarrow B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T10$</td>
<td>1035</td>
<td>0</td>
<td>581</td>
<td>348</td>
<td>1035</td>
</tr>
<tr>
<td>$T5$</td>
<td>3949</td>
<td>80</td>
<td>168</td>
<td>677</td>
<td>897</td>
</tr>
<tr>
<td>$T11$</td>
<td>1994</td>
<td>0</td>
<td>0</td>
<td>528</td>
<td>1035</td>
</tr>
<tr>
<td>$T13$</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>687</td>
</tr>
<tr>
<td>$T9$</td>
<td>1955</td>
<td>50</td>
<td>46</td>
<td>366</td>
<td>538</td>
</tr>
<tr>
<td>$T8$</td>
<td>1994</td>
<td>68</td>
<td>31</td>
<td>560</td>
<td>925</td>
</tr>
<tr>
<td>$T3$</td>
<td>3949</td>
<td>146</td>
<td>209</td>
<td>831</td>
<td>808</td>
</tr>
<tr>
<td>$T6$</td>
<td>1035</td>
<td>0</td>
<td>0</td>
<td>348</td>
<td>348</td>
</tr>
<tr>
<td>$T7$</td>
<td>959</td>
<td>0</td>
<td>0</td>
<td>264</td>
<td>241</td>
</tr>
<tr>
<td>$T12$</td>
<td>994</td>
<td>0</td>
<td>0</td>
<td>528</td>
<td>505</td>
</tr>
<tr>
<td>$T1$</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>687</td>
<td>0</td>
</tr>
<tr>
<td>$T2$</td>
<td>1994</td>
<td>0</td>
<td>0</td>
<td>1035</td>
<td>505</td>
</tr>
<tr>
<td>$T4$</td>
<td>1994</td>
<td>691</td>
<td>0</td>
<td>1035</td>
<td>505</td>
</tr>
</tbody>
</table>

Table 1: an example D/F-table for task $T6$.

Metric (i) through (v) seems clear without extra explanation. The underlying intuition of metric (vi) is as follows. If it always the case that, when task A occurs, shortly later task B also occurs, than it is plausible that task A causes the occurrence of task B. On the other hand, if task B occurs (shortly) before task A it is implausible that task A is the cause of task B. Below we define the formalization of this intuition. If, in an event stream, task A occurs before task B and n is the number of intermediary events between them, the $A \rightarrow B$-causality counter is incremented with a factor (δ^n). δ is a causality fall factor (δ in $[0.0...1.0]$). In our experiments δ is set to 0.8. The effect is that the contribution to the causality metric is maximal 1 (if task B appears directly after task A then $n=0$) and decreases if the distance increases. The process of looking forward from task A to the occurrence of task B stops after the first occurrence of task A or task B. If task B occurs before task A and n is again the number of intermediary events between
them, the $A \rightarrow B$-causality counter is decreased with a factor $\bar{\delta}$. After processing the whole workflow log the $A \rightarrow B$-causality counter is divided by the overall frequency of task A ($\#A$).

Given the process model of Figure 1 a random workflow log with 1000 event sequences (23573 event tokens) is generated. As an example Table 1 shows the above-defined metrics for task T_6. Notice that the task T_6 belongs to one of two concurrent event streams (the AND-split in T_2). It can be seen from Table 1 that (i) only the frequency of T_6 and T_{10} are equal ($\#T_6 = \#T_{10} = 1035$), (ii) T_6 is never directly preceded by T_{10} ($B<A=0$), (iii) T_6 is often directly followed by T_{10} ($A>B=581$), (iv) T_6 is sometimes preceded by T_{10} ($B<<A = 348$), and (v) always preceded by T_{10} ($A>>B = \#T_6 = 1035$). Finally, (vi) there is strong causality relation from T_6 to T_{10} (0.803) and to a certain extent to T_5 (0.267). However, T_6 is from time to time directly preceded by T_5 ($B<A = 80$). In the next section we will use the D/F-table in combination with a relatively simple heuristic to construct a D/F-graph.

3.2 Induction of dependency/frequency graphs

In the previous section we observed that the information in the T_6-D/F-table strongly suggests that task T_6 is the cause for task T_{10} because the causality between T_6 and T_{10} is high, and T_6 is never directly preceded by T_{10} and frequently (directly) followed by T_{10}. Our first heuristic rule is in line with this observation:

$$\text{IF } ((A \rightarrow B \geq N) \text{ AND } (A > B \geq \sigma) \text{ AND } (B < A \leq \sigma)) \text{ THEN } <A,B> \in T$$

(1)

The first condition $(A \rightarrow B \geq N)$ uses the noise factor N (default value 0.05). If we expect more noise we can increase this factor. The first condition calls for a higher positive causality between task A and B than the value of the noise factor. The second condition $(A > B \geq \sigma)$ contains a threshold value σ. If we know that we have a workflow log that is totally noise free, then every task-patron-occurrence is informative. However, to protect our induction process against inferences based on noise, only task-patron-occurrences above a threshold frequency σ are reliable enough for our induction process. To limit the number of parameters the value σ is automatically calculated using the following equation: $\sigma = 1 + \text{Round}(N \times \#L / \#T)$. N is the noise factor, $\#L$ is the number of trace lines in the workflow log, and $\#T$ is the number of elements (different tasks) in the node set T.

In our working example $\sigma = 1 + \text{Round}(0.05 \times 1000 / 13) = 5$. It is clear now that the second condition demands that the frequency of $A > B$ is equal or higher than the threshold value σ. Finally, the third condition states the requirement that the frequency of $B < A$ is equal or higher than σ. Applying this simple rule on the D/F-table based on the Figure 1 workflow-log results in the D/F-graph of Figure 2. If we compare the D/F-graph of Figure 2 with the Petri net of Figure 1 it can be seen that all the connections between the nodes are in accordance with underlying workflow model (all connections are correct and there are no missing connections).

However, the heuristic rule formulated above will not recognize recursion (in Figure 1, move the T_9-P_2 arrow to P_6) or short loops (in Figure 1, move the T_9-P_2 arrow to P_4). After all, the recursion in T_9 will result in patterns like $T_5, T_4, T_9, T_6, T_9, T_8$. Because T_9 seems both cause for, and result from T_9 the frequency of the casualty relation $T_9 \rightarrow T_9$ is about zero. However we can recognize the recursion relatively
simple: it will result in both a high and equal frequency of \(T9 > T9 \) and \(T9 < T9 \) and a high and equal frequency of \(T9 >>> T9 \) and \(T9 <<< T9 \).

Figure 2: the automatically mined D/F-graph.

The short loop from \(T9 \) to \(T5 \) will result in patterns like \(T5, T4, T9, T5, T9, T6, T5, T8 \). Again \(T5 \) seems both cause for, and result from \(T9 \). However, short loops can be recognized by observing that both a high and about equal frequency of \(T5 > T9 \) and \(T9 < T5 \) and a high and about equal frequency of \(T5 >>> T9 \) and \(T9 <<< T5 \). In line with this observations our first heuristic rule (1) is extended with rule (2) and (3):

1. \(IF \ (A \rightarrow A \gg 0) AND (A < A \gg A > 0.5 \cdot \#A) AND (A < A - A > A > 0.5 \cdot \#A) \ THEN \ <A,A> \in T \)
2. \(IF \ (A \rightarrow B = 0) AND (A > B \geq \sigma) AND (B < A > A > B) \ AND (A > > B \geq 0.4 \cdot \#A) AND (B <<< A = A >> B) \ THEN \ <A,B> \in T \)

To prevent our heuristic from breaking done in the case of some noise, we use an about symbol (≈) instead of the equality symbol (=). Again, the noise factor \(N \) is used to specify what we mean with ‘about equal’: \(x \approx y \) iff the relative difference between them is less than \(N \).

3.3 Generating WF-nets from D/F-graphs

Given a workflow log it appears relatively simple to find the corresponding D/F-graph. But, the types of the splits and joins are not yet represented in the D/F-graph. However information in the D/F-table contains useful information to indicate the type of a join or a split. For instance, if we have to detect the type of a split from \(A \) to \(B \) AND/OR \(C \), we can look in the D/F-table to the values of \(C < B \) and \(B > C \). If \(A \) is an AND-split we expect a positive value for both \(C < B \) and \(B > C \) (because the pattern \(B, C \) and the pattern \(C, B \) can appear). If it is a OR-split the patterns \(B, C \) and \(C, B \) will not appear.

The pseudo code for an algorithm based on this heuristic is given in Table 2. Suppose, task \(A \) is directly preceded by the task \(B_1 \) to \(B_n \). \(Set_i \) to \(Set_n \) are empty sets. After applying the algorithm all OR-related tasks are collected in a set \(Set_i \). All not empty sets are in the AND-relation.

We can apply an analogue algorithm to reconstruct the type of a join. For instance, applying the algorithm on the \(T11 \)-join will result in two sets \(\{T7, T10\} \) and \(\{T8\} \) or in proposition-format \(((T7 OR T10) AND T8) \). Using this algorithm we were able to reconstruct the types of the splits and joins appearing in our working example and to reconstruct the complete underlying WF-net. In the next section we will report our
experimental results of applying the above-defined heuristics on other workflow logs, with and without noise.

\[
\text{For } i := 1 \text{ to } n \text{ do }
\]
\[
\text{For } j := 1 \text{ to } n \text{ do }
\]
\[
\text{OK} := \text{False};
\]
\[
\text{Repeat}
\]
\[
\text{If } \forall X \in \text{Set}_j \{ (B_i < X < \sigma) \text{ AND } (X > B_i < \sigma) \} \text{ then}
\]
\[
\text{Begin } \text{Set}_j \leftarrow \text{Set}_j \cup \{B_i\}; \text{ OK} := \text{True }; \text{ End;}
\]
\[
\text{Until } \text{OK; }
\]
\[
\text{End } j \text{ do; }
\]
\[
\text{End } i \text{ do; }
\]

Table 2: the pseudo code used to reconstruct the types of the splits and joins of a D/F-graph.

3.4 Experiments

To test our approach we use the Petri-net-representations of six different workflow models. The complexity of these models range from comparable with the complexity of our working model of Figure 1 (13 tasks) to models with 16 tasks. All models contain concurrent processes and loops. For each model we generated three random workflow logs with 1000 event sequences: (i) a workflow log without noise, (ii) one with 5% noise, and (iii) a log with 10% noise. Below we explain what we mean with noise.

To incorporate noise in our workflow logs we define four different types of noise generating operations: (i) delete the head of a event sequence, (ii) delete the tail of a sequence, (iii) delete a part of the body, and finally (iv) interchange two random chosen events. During the deletion-operations minimal one event, and maximal one third of the sequence is deleted. The first step in generating a workflow log with 5% noise is a normal random generated workflow log. The next step is the random selection of 5% of the original event sequences and applying one of the four above described noise generating operations on it.

Due to lack of space it is not possible to describe all workflow models and the resulting D/F-graphs in detail. However, applying the above method on the six noise free workflow logs results in six perfect D/F-graphs (i.e. all the connections are correct and there are no missing connections), and exact copies of the underlying WF-nets. If we add 5% noise to the workflow logs, the resulting D/F-graphs and WF-nets are still perfect. However, if we add 10% noise to the workflow logs one D/F-graph is still perfect, five D/F-graphs contains one error. All errors are caused by the low threshold value \(\sigma=5\) in rule (1), resulting in an unjustified applications of this rule. If we increase the noise factor value to a higher value \((N=0.10)\), the automatically calculated threshold value \(\sigma\) increases to 9 and all five errors disappear and no new errors occur.

4. Conclusion

In this paper we introduced the context of workflow processes and process mining, some preliminaries including a modeling language for workflow processes, and a definition of
a workflow log. Hereafter, we presented the details of the three steps of our process mining technique: Step (i) the construction of the D/F-table, step (ii) the induction of a D/F-graph out of a D/F-table, and step (iii) the reconstruction of the WF-net out of the D/F-table and the D/F graph.

In the experimental section we applied our technique on six different sound workflow models with about 15 tasks. All models contain concurrent processes and loops. For each workflow model we generated three random workflow logs with 1000 event sequences: (i) without noise, (ii) with 5% noise, and (iii) with 10% noise. Using the proposed technique we were able to reconstruct the correct D/F-graphs and WF-nets. The experimental results with the workflow logs with noise indicate that our technique seems robust in case of noise.

Notwithstanding the reported results there is a lot of future work to do. First, the reported results are based on a limited number of experimental results; more experimental work must be done. Secondly, we will try to improve the quality and the theoretical basis of our heuristics. Can we for instance prove that our heuristic is successful applicable to logs from for instance free-choice WF-nets? Finally, we will extend our mining technique in order to enlarge the set of underlying WF-nets that can be successfully mined.

References